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Abstract
The theory of the premelting phenomena in ionic crystals has been developed on the basis of the
concept of heterophase fluctuation in the vicinity of their melting points. The size of the
liquid-like clusters is estimated by the theory using the experimental specific heat value.
Molecular dynamics simulations are also performed in NaCl and AgBr crystals to examine the
ionic configuration in the premelting region. The structural features are discussed using the
Lindemann instability criterion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the higher temperature region, most ionic crystals have
various relevant temperature dependences in their physical
properties, such as ionic conductivity [1], specific heat [2], the
thermal expansion coefficient [3], and so on [4]. Some of these
in the vicinity of their melting points seem to be connected with
the premelting phenomena [5].

Many years ago, Frenkel proposed a general theory of
heterophase fluctuations in relation to the pre-transition phe-
nomena including the premelting of solids [6]. The concept
of Frenkel theory is that the liquid droplets occur in small
regions of space and time of solids, which makes it possible
to explain these anomalies satisfactorily. At the time of this
proposal, unfortunately the experimental data were not suffi-
cient, and there was a limitation to combining Frenkel theory
and various experimental data. However, recent developments
in the information from computer simulations and of various
experimental data have caused us to re-evaluate Frenkel the-
ory in order to estimate the size of small droplets proposed by
Frenkel, by using some recent experimental data [2].

In section 2, we will discuss the origin of the heterophase
fluctuation in the vicinity of the melting points of ionic
crystals. In the following sections the Frenkel theory will
be reconstructed, and furthermore we will derive several
thermodynamic quantities due to such heterophase fluctuations
in ionic crystals.

2. Fluctuation of defects in an ionic crystal

With increasing temperature in an ionic crystal, Schottky
and/or Frenkel defects are produced in order to increase

the entropy and eventually to diminish the total Gibbs free
energy.

When the concentration of defects is relatively small,
the distribution of defects seems to be random. On
increasing the temperature, the increase of concentration
naturally causes a defect–defect interaction. Using the Debye–
Hückel approximation, Kurosawa obtained the result that the
formation free energy of a pair of Schottky-type defects in an
ionic crystal was lowered by the appearance of defect–defect
interaction with increasing temperature [7]. According to him,
the formation energy of a pair of Schottky-type defects EV is
expressed as follows:

EV = −2kBT ln f − A f γ , (1)

where f is the fraction of defects to the total constituents. The
last term of (1) is caused by the appearance of defect–defect
interactions, in which A is a constant and γ is equal to 1/2.

In the case of Frenkel-type defects, it is well known that
the required energy to form an interstitial vacancy is a function
of the available number of interstitial positions, and equation
(1) is modified so as to satisfy such a condition.

Using the specific heat data for some ionic crystals which
have Frenkel-type defects, Hainovsky and Maier have shown
that the correction term due to the defect–defect interaction is
proportional to the cube root of concentration [8].

The lowering of the defect’s formation energy naturally
causes a more rapid increase of defects, which is related to
various anomalies in the ionic crystals. Such anomalies can be
identified by a rapid increase of the volume, the specific heat,
and the ionic conductivity, and a rapid decrease in the elastic
constant, etc.
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Hereafter we will consider the concentration fluctuation
of defects on the basis of statistical thermodynamics. Let
α′(= α′

1, α
′
2, α

′
3, . . .) be the thermodynamic variables of a

partial system I , which deviates from a large system under
a thermal equilibrium denoted by II, in which variables are
expressed by their thermal equilibrium α∗(= α∗

1 , α
∗
2 , α

∗
3 , . . .).

The probability P(α′) indicating the variables α′ is given by

P(α′) = C exp{−Wmin(α
∗, α′)/kBT ∗}, (2)

where C is a normalization constant. Wmin(α
∗, α′) is the

minimum free energy deviating from that of the thermal
equilibrium state α∗.

In the case that an ionic crystal includes Frenkel-type
defects, the system is physically equivalent to N1 defect pairs
as solute being dissolved into N0 ionic pairs of solvent crystal.
Thus we can apply the fluctuation theory of a solute in an
aqueous solution [9]. The quantity Wmin(α

∗, α′) in such a
solution can be written as follows:

Wmin(α
∗, α′) = −(�p�V −�T�S −�μ1�N1)/2, (3)

where μ1 means the chemical potential of a pair of defects in
the ionic crystal which is composed of the total number of ion
pairs, N(= N0 + N1), and �X means the fluctuation of X . If
equation (3) is expressed in terms of �p and �N1 under the
condition�T = 0, we have

Wmin(α
∗, α′) = (1/2){−(∂V/∂p)T,N(�p)2

+ (∂μ1/∂N1)T,p(�N1)
2}. (4)

Therefore the ensemble average of (�N2
1 ) is given by

(�N2
1 )av = kBT ∗/(∂μ1/∂N1). (5)

On the other hand, the Gibbs free energy with N1 defect pairs
is written as follows:

G = (E∗
perfect−T ∗S∗

perfect)+N1 Ev−kBT ∗ ln{N !/N0 !N1!}. (6)

The first round brackets on the right-hand side of this equation
indicate the Gibbs free energy of a perfect crystal. The
summation of the second and third terms is equal to the Gibbs
free energy, which is necessary for the defect formation.

Differentiating G from N1 we have

μ1 = (∂G/∂N1)p,T ∼ Ev + kBT ∗ ln N∗
1 . (7)

Here the differentiation for the last term of equation (1) is
neglected. Then we have

(∂μ1/∂N1) = kBT ∗/N∗
1 . (8)

Putting this relation into (5), we have

(�N2
1 )av = N∗

1 . (9)

Taking the last term in equation (1) into account for the
differentiation of Ev , then the obtained value becomes larger
than N∗

1 , to some extent.
Let us assume a Gaussian function for the probability

distribution function for the number of defects, N1, under the

condition that its root-mean-square deviation from N∗
1 is equal

to (N∗
1 )

1/2 as described in equation (9), then its explicit form is
written as follows:

P(�N1) = (1/2πN∗
1 )

1/2 exp{−(�N1)
2/2N∗

1 },
(�N1) = (N1 − N∗

1 ).
(10)

This distribution function suggests that it is easy to get to a
large amount of fluctuation of defects being equal to ±(N∗

1 /2).
Therefore it is not unreasonable to consider that, locally, the
system has parts with a large amount of defects in comparison
with its equilibrium value and to form a cluster in which ions
are not always to keep the normal solid behavior and then
behave like in the liquid state. In the vicinity of the melting
point, therefore, it may be possible to have such local clusters
moving to and fro in space and time. This situation is certainly
equivalent to the occurrence of the heterophase proposed by
Frenkel.

We denote this sort of local cluster as the B′-state and all
the other remaining parts keeping the condition of the ordinal
ionic crystal as the A-state. However, it is emphasized that
all these clusters of the B′-state can be created and annihilated
dynamically in time and space, keeping only the thermal
equilibrium for A � B′ and appearing macroscopically as one
phase; otherwise the system contradicts the Gibbs phase rule.
Hereafter we will call this sort of cluster a ‘quasi-liquid’, in
short the ‘L’-state. It is interesting to investigate whether its
physical properties are similar to those of bulk liquid or not.
And there occur various premelting phenomena in the physical
properties.

From a different point of view, the appearance of such
clusters in the vicinity of the melting point has recently been
recognized as the Lindemann instability by using computer
simulation [10]. With increasing temperature, therefore, a
lattice composed of a mixture of states A and B′ approaches the
catastrophe of instability and there occurs a phase transition to
the liquid state B. These changes are shown below.

(ordinal crystal,A)
transition 1−−−−−−→(mixture of A and B′)

transition 2−−−−−−→ (liquid phaseB).

The transition 1 is a kind of higher-order one like the
order–disorder transition. Since the mixture of A and B′ is
thermodynamically equal to one phase, this means that some
of the physical properties of the cluster B′ itself cannot be
distinguished macroscopically. However, it may be possible
to define the chemical potential in the cluster μB′ , because it
can be determined by each ion pair. We denote the chemical
potential of the A-state as μA. The transition 2 is, of course,
equal to the usual melting.

3. Reconstruction of Frenkel theory

In this section, we will reconstruct the Frenkel theory [6] in
a slightly different way and extend it so as to be able to use
recent experimental data. Let us consider an ionic crystal with
the premelting phenomena, in the vicinity of its melting point.
Here we assume that the numbers of positive and negative
ions are both equal to N and the number densities of the
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liquid state B and of B′-clusters are almost the same, being n0

(= N/VM; VM is the molar volume), and in addition we will
take μB′ ∼ μB as an approximation. In order to minimize the
surface energy, the most ideal shape of a B′-cluster composed
of s-pairs is close to a sphere; then we have

s = n0(4πr 3/3). (11)

The surface area of this sphere is, then, given by
4π(3s/4πn0)

2/3, and the corresponding surface free energy, α,
is equal to 4πσ(3s/4πn0)

2/3, where σ is the surface tension
per unit area. Therefore, the total chemical potential of this
cluster is given by (sμB + αs2/3). Let the number of ion pairs
belonging to the A-phase be NA and let the total number of s-
pair clusters be equal to gs ; then the total Gibbs free energy of
the system, G total, is described as follows:

G total = NAμA +
∑

s=s0

gs(sμB + αs2/3)+ Smix(gs, T ). (12)

In this equation s0 means the lowest number of ion pairs.
Smix(gs, T ) means the mixing entropy and its simplified
expression is

Smix(gs, T ) = kBT

[
NA ln

{
NA

/(
NA +

∑
gs

)}

+
∑

s

gs ln

{
gs

/(
NA +

∑
gs

)}]
. (13)

Since the total number of ions is kept constant, we have

NA +
∑

s

sgs = N (14a)

or

ψ = N −
(

NA +
∑

s

sgs

)
= 0. (14b)

By using the method of Lagrange multipliers, the condition of
minimizing the G total value is given by the following relation:

{(∂G total/∂NA)+ (λ∂ψ/∂NA)} dNA + {(∂G total/∂gs)

+ (λ∂ψ/∂gs)} dgs = 0. (15)

Taking λ = − ln C , we have
{

gs

/(
NA +

∑
gs

)}
= Cl exp[−β(sμB + αs2/3)] (16)

and {
NA

/(
NA +

∑
gs

)}
= C exp[−βμA], (17)

where β = 1/kBT and l is a constant value which it is not
necessary to specify. Combining equations (13), (16) and (17),
we have

gs =
(

NA +
∑

gs

){
NA

/ (
NA +

∑
gs

)}l

× exp[−β{s(μB − μA)+ αs2/3}]. (18)

The total fraction of clusters seems to be much smaller in
comparison with N ; that is,

∑
gs � NA ∼ N . Therefore,

we have

gs �
(

NA +
∑

gs

) {
1 −

(
l
∑

gs/NA

)}

× exp[−β{s(μB − μA)+ αs2/3}]
� N exp[−β{s(μB − μA)+ αs2/3}]. (19)

At the temperature T just below the melting point Tm, the
chemical potentials μA and μB are thermodynamically given
by the following relation:

μB − μA = {(∂μB/∂T )Tm − (∂μA/∂T )Tm}(T − Tm)

= {(sA)Tm − (sB)Tm}(T − Tm), (20)

where (sA)Tm and (sB)Tm are equal to the entropies of the states
A and B. Therefore, by using the latent heat of fusion Lm, we
have

{(sA)Tm − (sB)Tm} = −(Lm/NTm) (21)

and
μB − μA = −(Lm/NTm)(T − Tm). (22)

Putting (22) into (19), we have

gs = N exp[−β{s(Lm/NTm)(Tm − T )+ αs2/3}]. (23)

Combining (12), (13), (16) and (17), we have

G total = NkBT ln C = NμA − NkBT ln

{
NA

/(
NA

+
∑

gs

)}
∼ NμA − NkBT

(∑
gs/NA

)
. (24)

Insertion of (23) into (24) gives the following relation:

G total = NμA − NkBT
∑

s=s0

exp[−β{s(Lm/NTm)(Tm − T )

+ αs2/3}]. (25)

If the number of ion pairs s is regarded as continuous with
its lowest value s0, then the above equation is described by an
integration form as follows:

G total = NμA − NkBT
∫ ∞

s0
exp[−β{s(Lm/NTm)(Tm − T )

+ αs2/3}] ds. (26)

It is emphasized that the Gibbs free energy of the present
system is lowered by the mixture of (A-state + B′-state) rather
than the homogenized A-state. In other words, the appearance
of the clusters indicated by the B′-state seems plausible from
the viewpoint of thermodynamic conditions.

By using the Gibbs–Helmholtz equation, the enthalpy
change, �H , corresponding to the second term on the right-
hand side of equation (26) is equal to

�H = Lm

∫ ∞

s0
s exp[−β{s(Lm/NTm)(Tm − T )+ αs2/3}] ds.

(27)

4. Anomalous specific heats of ionic crystals in the
neighborhood of their melting points

Hainovsky and Maier [8] were successful in explaining the
thermodynamic anomalies in some Frenkel-type defected ionic
crystals. In particular, they obtained the defects’ fractions by
analyzing the temperature dependences of the specific heats.

In contrast, we will derive the value of the anomalous
specific heat at the melting point by using (27) and investigate
how its value varies with (Tm − T ). Applying the Maxwell

3
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relation to (27), we have the specific heat of the system
(mixture of A and B′) at the melting point, Cp(Tm), as follows:

Cp(Tm) = CA
p (Tm)+(L2

m/NkBT 2
m)

∫ ∞

s0
s2 exp[−β(αs2/3)] ds,

(28)
where CA

p (Tm) is the normal specific heat in the A-state only
case at T = Tm. The normal specific heat of the A-state,
CA

p (T ), where only some defects are distributed randomly,
may be expressed by a linear temperature dependence, as will
be discussed below. The last term of (28) was already obtained
by Frenkel [6].

Our task is to extend equation (28) so as to be able to
compare with the observed specific heats in order to obtain the
cluster sizes of the B′-state. Carrying out the partial integration
for the last term of equation (28), we obtain

Cp(Tm) = CA
p (Tm)+ (3/2)(L2

m/NkBT 2
m)

×
[
(1/βα)s7/3

0 exp{−βαs2/3
0 }

+ (17/6βα)
∫ ∞

s0
s4/3 exp{−βαs2/3} ds

]
. (29)

If we assume that the distribution of the cluster sizes is rather
sharp around the value of ŝ, which number is also close to the
lowest one s0, then we have the following form instead of (29):

Cp(Tm) ∼ CA
p (Tm)+ (3/2)(L2

m/NkBT 2
m)

× [(1/βα)ŝ7/3 exp{−βαŝ2/3} + (17/6βα)ŝ4/3

× exp{−βαŝ2/3}] ∼ CA
p (Tm)+ (3/2)(L2

m/NkBT 2
m)

× [(1/βα)ŝ7/3 exp{−βαŝ2/3}]. (30)

By using (30), the specific heat at the temperature T in the
vicinity of the melting point, Cp(T ), is expressed as follows:

Cp(T ) ∼ CA
p (Tm)+�Cp(Tm) exp[Lmŝ/NkBTm]

× exp[−Lmŝ/NkBT ], (31)

where

�Cp(Tm) = (3/2)(L2
m/NkBT 2

m)[(1/βα)ŝ7/3 exp{−βαŝ2/3}].
(32)

The normal specific heat of state A at temperature T is
usually determined by the defects’ formation energy and the
unharmonic term in the lattice vibration in addition to the
classical Dulong–Petit’s value. The former two terms are
linearly but gently proportional to the temperature as known
from various experiments under the condition of no defect–
defect interaction.

The anomalous specific heat in the vicinity of the melting
point is caused by the second term on the right-hand side of
equation (31). In a later section, we will obtain the magnitude
of clusters denoted by ŝ, by using the observed specific heats
and all other available data of solid AgBr and NaCl.

5. Determination of ion pairs’ numbers of averaged
clusters and their total fractions

In this section, we will briefly discuss the total fraction of
‘L’ or ‘quasi-liquid’ clusters. We also assume that there exist

from [2]

C
p 

[c
al

 m
ol

-1
 K

-1
]

Figure 1. Temperature dependence of C p after reference [2].

clusters of which the number of ion pairs is only ŝ as the mean
value for simplicity. Let us denote the fraction of ionic pairs
belonging to the ‘L’ clusters as g. This fraction can be written
as follows:

g = ŝgs/N = ŝ exp[−β{s(μB − μA)+ αs2/3}]. (33)

At a temperature T ∼ Tm, we have

g(T ) = ŝ exp[−β{ŝ(Lm/NTm)(Tm − T )+ αŝ2/3}] (34)

and at a temperature a T = Tm,

g(Tm) = ŝ exp[−β(αŝ2/3)]. (35)

Hereafter, we will determine some quantitative magnitudes of
the ‘L’ clusters of AgBr and NaCl as case studies.

5.1. Case study for AgBr which has Frenkel-type defects

Fortunately, the experimental study on the specific heat of solid
AgBr has been carried out up to the melting point by Jost and
Kubaschewski [2].

According to their experimental results, we know
that Cp(Tm) = 14.85 cal mol−1 K−1, CA

p (Tm) =
8.15 cal mol−1 K−1, which can be obtained from a linear
extrapolation to the melting point. Then, the anomalous
specific heat is equal to �Cp = 6.7 cal mol−1 K−1, as shown
in figure 1. Other data necessary for the estimation of ŝ are
Tm = 703 K, Lm = 2199.1 cal mol−1 and βα ∼ 1/7, which
is inferred from the surface tension of molten NaCl. Inserting
these quantities into (30), we have

ŝ ∼ 1553.

Putting this value into (35), we also have

g(Tm) ∼ 0.74 × 10−5.

5.2. Case study for NaCl which has Schottky-type defects

The known experimental data are Tm = 1073 K, Lm =
7220 cal mol−1, σ = 116 CGS unit [11], and α = 1.38×10−13

4
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Table 1. Temperature dependence of δL of the system.

NaCl AgBr
T (K) δL T (K) δL

1148 1.0535 883 0.5706
1074 0.2135 703 0.2536

973 0.1782 604 0.1877
300 0.0882 300 0.1268

CGS unit; therefore we have βα ∼ 1/6. Since there is at
present no satisfactory information on the specific heat up to
the melting point, we will assume acceptable quantities, such
as Cp(Tm) = 15 cal mol−1 K−1, CA

p (Tm) = 7 cal mol−1 K−1,
and �Cp = 8 cal mol−1 K−1; putting these values into (30),
then we have immediately

ŝ ∼ 856.

Putting this value into (35), we have

g(Tm) = 1.00 × 10−3.

This fraction is somewhat bigger than the case of AgBr.
However, its value may be a plausible fraction.

Under these populations of ‘L’ clusters, it is not easy
to keep the inverse lattice periodicity for the ion’s one-body
distribution and one can expect a catastrophe in the crystal
array i.e. more distorted ion distrubution. In fact, Jin et al
have shown that the Lindemann instability of Lennard-Jones
particles in a face-centered cubic box prevails over a wide
region of liquid-like clusters consisting of about 300 particles,
the size of which was found to be stable [10].

According to Hainovsky and Maier [7], the defect
fraction in Frenkel-type defected crystals like AgCl and AgBr
approaches to the order of 1.00 × 10−4. Therefore the fraction
of defects in the clusters in such crystals, f ′, must be f ′ �
1.00 × 10−4. If the fraction f ′ is in the range 10−2–10−3, it
may be easy for an instability of the periodicity to occur to
begin the melting.

6. Molecular dynamics simulation

So far, we have discussed the premelting features on the basis
of the re-examined Frenkel theory. Meanwhile, there have
been number of reports on the melting of crystals from both
statistical thermodynamics [12] and the dynamics of atoms
or ions [13], since Lindemann proposed the instability of
crystals [14].

One of the most effective ways to confirm the above
results and to examine the ionic configuration detail is
molecular dynamics (MD) simulation. We have performed
MD simulations in the NaCl and AgBr systems. The
detailed simulation procedure is essentially the same as used
before [15]. We briefly describe it, as follows. The Tosi–Fumi-
type pair potentials are used in the MD simulation for NaCl,
which are expressed as [16]

Vi j(r) = Bi j exp(−ai jr)+ zi z j e
2/r − Ci j/r 6, (36)

Table 2. Average of δL for ‘L’ and ‘non-L’ ions.

NaCl at 1074 K δL AgBr at 703 K δL

‘L’ Na ions 0.26 ‘L’ Ag ions 0.32
‘L’ Cl ions 0.27 ‘L’ Br ions 0.26
‘non L’ ions 0.20 ‘non L’ ions 0.22

where the first term represents the short-range repulsion
between ions; the second term stands for the Coulomb
interactions with the charge of ions, zi and z j ; and the third
term represents the van der Waals interactions.

For AgBr, we adopt the Rahman, Vashishta and Parrinello
(RVP) [17] type potentials, because they are often used for
noble-metal halides. The RVP-type potentials for i and j ions
are written as

Vi j(r) = Hi j/rni j + zi z j e
2/r − Pi j/r 4 − Ci j/r 6, (37)

where the first term stands for the repulsion between ions; the
second is the Coulomb interaction; the third term is charge–
dipole interactions; and the fourth term is the van der Waals
contributions. The adopted parameter values are taken from
the literature [16, 18]. The MD calculations are carried out
for NaCl and AgBr using 8000 atoms (4000 cations and 4000
anions) placed in a cubic cell, which may include the expected
whole ‘L’ cluster. The number densities used are taken from
experiments [19]. The periodic boundary condition is used.
The Coulomb interaction is calculated by the Ewald method.
At first the cell is equilibrated at a constant temperature; then
the calculation of the structure is carried out on the condition
that the number of the particles, the volume of the cell and the
total energy of the system (NV E) are constant.

In order to examine the detail of premelting phenomena
in ionic crystals, we evaluated the Lindemann instability
criterion, which is expressed by Lindemann ratio δL, which
is obtained by the root-mean-square displacement of the
particle in question at ri (t) from its original lattice site
Ri(0), 〈�r2〉1/2 = 〈(ri (t) − Ri(0))2〉1/2, divided by the
average nearest-neighbor distance 〈rkl 〉 [10]. The temperature
dependence of the system average δL for NaCl and AgBr is
listed in table 1.

The calculations of δL are performed at temperatures
corresponding to the molten phase, melting point, 100 K
below the melting point, and solid phase at room temperature,
respectively. The obtained δL values show the similar
temperature dependence as in Lennard-Jones (LJ) crystals [10],
which means that δL is also effective as a premelting feature in
ionic crystals. We adopt the critical Lindemann ratio, δc =
0.24, in order to distinguish ‘Lindemann particles’, which we
have referred to as ‘quasi-liquid’ or ‘L’ particles in previous
sections, from the ‘solid-like’ particles or ‘non-L’ particles.
The estimated numbers of ‘L’ particles at the melting point
of NaCl and AgBr crystals are 806 Na and 719 Cl, and 2256
Ag and 958 Br, respectively. These evaluations are comparable
with the ion numbers estimated by the theory, 1712 and 3150
for total ‘L’ ions in NaCl and AgBr, respectively. The average
of δL for ‘L’ and ‘non-L’ ions in NaCl and AgBr at 1074 K
and 703 K, respectively, are listed in table 2.

5
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(a)

(c)

(b)

Figure 2. (a) Trajectories of Na Lindemann particles in NaCl crystal at 1074 K. (b) Trajectories of Cl Lindemann particles in NaCl crystal at
1074 K. (c) Trajectories of non-Lindemann particles in NaCl crystal at 1074 K.

The obtained average δL for ‘L’ ions of Na, Cl and Br are
about 0.26; on the other hand, the average δL for ‘L’ ions of Ag
is 0.32, which indicates a mobile feature of ‘L’ ions of Ag. The
value 0.22 was used by Jin et al [10] as δc for Lennard-Jones
(LJ) crystals;, however, it seems to yield an overestimation of
the number of ‘L’ particles in NaCl and AgBr, 3067 and 4392
of the total ‘L’ ions, respectively. These results may be caused
by the fact that the interactions between particles in ionic
crystals are different from those in LJ particles. The typical
examples of trajectories of ‘L’-type Na and Cl projected on
x–y planes are shown in figures 2(a) and (b), respectively;
they are obviously different from those of ‘non-L’ ions in
figure 2(c). The cluster-like structures are clearly seen in
figures 2(a) and (b). Regarding AgBr, as is seen in figure 3(b),
the Br ions form cluster-like structures, which resemble the
‘L’ ions in NaCl. The trajectories of Ag ions in figure 3(a),
however, show a more spread distribution, and a cluster-like
feature is also observed. According to the experimental study
on the structure of AgBr, Frenkel-type disorder of Ag in the
Br sublattice occurs before melting. However, the transition
to the superionic phase in AgBr at high temperature, which

is observed in some noble-metal halides, e.g. AgI, seems to
be prevented by melting [20, 21]. The present results by
MD simulation of trajectories of Ag and unequal ‘L’ particle
numbers of Ag and Br correspond to these experimental facts.

The partial pair distribution functions, gi j(r), are
calculated to examine the ionic configuration details; they are
obtained from an average of 400–600 MD time steps. The
gi j(r) obtained for NaCl in the premelting region for ‘L’ and
‘non-L’ ions are shown in figures 4(a) and (b), respectively,
with those of the molten and solid phase for comparison. The
obtained gi j(r) of ‘non-L’ ions of NaCl have similar features
to those of the solid phase. In the gi j(r) of ‘L’ ions in NaCl, the
peaks and troughs (except the first peaks) become flatter than
those of ‘non-L’ ions, though their features are still those of
the solid phase. The gi j(r) of ‘non-L’ ions of AgBr are shown
in figure 5(b); they also resembles those of the solid phase.
On the other hand, the gi j(r) of ‘L’ ions, especially gAgAg(r),
have more liquid-like features in figure 5(a), though the peaks
and small shoulders that originate in the solid structure are still
observed.
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(a) (b)

(c)

Figure 3. (a) Trajectories of Ag Lindemann particles in AgBr crystal at 703 K. (b) Trajectories of Br Lindemann particles in AgBr crystal at
703 K. (c) Trajectories of non-Lindemann particles in AgBr crystal at 703 K.

(a) (b)

Figure 4. (a) gi j (r) of Lindemann particles in NaCl at 1074 K together with those of the molten phase (thin solid line). (b) gi j (r) of
non-Lindemann particles in NaCl at 1074 K together with those of the solid phase, 100 K below the melting point (thin solid line).
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(a) (b)

0 10 20 0 10 20

Figure 5. (a) gi j (r) of Lindemann particles in AgBr at 703 K together with those of the molten phase (thin solid line). (b) gi j (r) of
non-Lindemann particles in AgBr at 703K together with those of the solid phase, 100 K below the melting point (thin solid line).

Figure 6. Macroscopic G(= Nμ)–T curves with the coexistence of
A′ and B′ around Tm.

7. Discussion

In section 6, we obtained the cluster distribution of ‘L’
particles in NaCl and AgBr, and their numbers are comparable
with the value estimated by the theory. However, the estimated
ratio of ion pairs associated with the clusters of ‘L’ particles to
the total number of ion pairs in NaCl g (at Tm) is 1.00 × 10−3,
which could not be reproduced by the present MD simulation.
Using the postulate that the distribution of clusters is given by
a binomial or corresponding Gaussian probability distribution
function, the distance between any two clusters can approach
about three times the spherical diameter, although the most
possible distance is approximately equal to ten times the
spherical diameter with probabilities about 0.015 and 0.175,
respectively. This fact may suggest that larger-scale MD
simulations are required to estimate g(T ) and the inter-cluster
distance.

The ‘L’ cluster obtained in the MD simulation seems to
separate into smaller parts. This may be explained as follows.
The occurrence of ‘L’ clusters causes a lowering of Gibbs free
energy, as shown in (25) or (26), which is schematically shown
in figure 6. Its lowering of energy is approximately equal to

0.005 cal mol−1. This magnitude may indicate that the melting
point itself is scarcely varied by such an appearance of ‘L’
clusters, and the cluster distribution in the cell rearranges to
lower the Gibbs free energy.

Acknowledgments

One of the authors (SM) expresses his thanks for the
financial support by Nippon Sheet Glass Foundation for
Materials Science and Engineering. He is also grateful to
the Ministry of Education, Science and Culture for financial
support by a Grant-in-Aid for Science Research. Parts of
the simulation results in this research were obtained using
supercomputing resources at the Information Synergy Center,
Tohoku University.

References

[1] See for examples Green P F 2005 Kinetics, Transport, and
Structure in Hard and Soft Materials (London: Taylor and
Francis)

Chiang Y-M, Birnie D P and Kingery W D 1997 Physical
Ceramics: Principles for Ceramic Science and Engineering
(New York: Wiley)

[2] Jost W and Kubaschewski P 1968 Z. Phys. Chem. 60 69
Christy R W and Lawson A W 1951 J. Chem. Phys. 19 517
Kanzaki H 1951 Phys. Rev. 81 884

[3] Lawson B R 1963 Acta Crystallogr. 16 1163
[4] Yamamoto S, Ohno I and Anderson O L 1987 Phys. Chem.

Solids 48 143
Hughes W C and Cain L S 1996 Phys. Rev. B 53 5174
Cain L S and Hu G 2001 Phys. Rev. B 64 104104

[5] Ubbelohde A R 1965 Melting and Crystal Structure
(Oxford: Clarendon)

[6] Frenkel J 1939 J. Chem. Phys. 7 200
Frenkel J 1939 J. Chem. Phys. 7 538

[7] Kurosawa T 1957 J. Phys. Soc. Japan 12 338
[8] Hainovsky N and Maier J 1995 Phys. Rev. B 51 15789

8

http://dx.doi.org/10.1063/1.1748281
http://dx.doi.org/10.1103/PhysRev.81.884
http://dx.doi.org/10.1107/S0365110X63003042
http://dx.doi.org/10.1016/0022-3697(87)90078-3
http://dx.doi.org/10.1103/PhysRevB.53.5174
http://dx.doi.org/10.1103/PhysRevB.64.104104
http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1750484
http://dx.doi.org/10.1103/PhysRevB.51.15789


J. Phys.: Condens. Matter 20 (2008) 114116 S Matsunaga and S Tamaki

[9] Kubo R (ed) 1978 Exercises in Thermodynamics and Statistical
Mechanics (Tokyo: Shokabō) (in Japanese)
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